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Abstract

It has been shown that the two theoretical cosolvency models, i.e. the excess free energy, EFE, and the combined
nearly ideal binary solvent/Redlich-Kister, CNIBS/R-K, despite different appearances could be converted to a general
single model, GSM, using some appropriate substitutions and rearrangements. The general model was a power series
equation with respect to the concentration of one of the solvents in a binary solvent system. From the obtained GSM
a theoretical justification was provided to the cosolvency equations employing the extended Hildebrand approach,
EHA, as well as those methods using an empirical power series equations for expressing the solubility. The accuracy
of GSM was compared with that of the original EFE and CNIBS/R-K models and the results suggested differences
in the accuracy between the original models and the corresponding GSM, which was attributed to differences in the
arrangements of the independent variables in the models. © 1997 Elsevier Science B.V.
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There are at least two theoretical and several
semiempirical and empirical equations for ex-
pressing the cosolvency, i.e. the solubility of a
solute in a binary solvent mixture.

It is the intention of this report to derive a
general single model, GSM, from the two theoret-
ical models excess free energy, EFE, (Williams
and Amidon, 1984) and the combined nearly ideal

binary solvent/Redlich-Kister, CNIBS/R-K,
(Acree, 1992) as well as to provide from GSM a
theoretical justification for the semiempirical co-
solvency equations based on the Hildebrand ap-
proach denoted as the extended Hildebrand
approach, EHA, (Adjei et al., 1980; Martin et al.,
1982a; Wu and Martin, 1983) and some empirical
equations (Martin et al., 1982a; Subrahmanyam
et al., 1992; Bustamante et al., 1993; Escalera et
al., 1994; O’Reilly and Corrigan, 1995; Reillo et* Corresponding author.
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al., 1995a), also to compare the accuracy of GSM
with EFE and CNIBS/R-K methods.

The theoretical EFE methods are two, three
and four suffix equations expressed by Eqs. (1)–
(3), respectively:
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where Xm is the solute solubility in the solvent
mixture, fa and fb are the volume fractions of the
solvents a and b in the mixture, Xa and Xb denote
the solubility in the solvents a and b and the other
terms have been defined in the original paper
(Williams and Amidon, 1984).

The second theoretical model, i.e. CNIBS/R-K,
in its general form is:

log Xm= fa log Xa+ fb log Xb+ fa fb %
n

i=0

Si( fa− fb)i

(4)

in which Si is the model constant and n can be
equal to 0–3 (Acree, 1992; Acree and Zvaigzne,
1991; Acree et al., 1991). Depending on the values
of n four equations can be obtained from Eq. (4).

Despite the different appearances of the two
theoretical models EFE and CNIBS/R-K, they
can be readily converted to GSM by simple sub-
stitutions and hence both can be mathematically
considered as a single model.

Substitution of (1− fa) for fb in Eqs. (3) and (4)
with n=2 and subsequent rearrangements result
in Eqs. (5) and (6), respectively:
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log Xm= log Xb
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Comparison of these two equations reveal that
both models are in fact identical and have a
general form of a power series with respect to fa

which can be written as Eq. (7) or Eq. (8):

log Xm=B0+B1 fa+B2 f 2
a+B3 f 3

a+B4 f 4
a (7)

or

log Xm= %
p

j=0

Bj( fa) j (8)

where B0–B4 or Bj are related to the correspond-
ing constant terms inside the brackets in Eqs. (5)
and (6). Using similar method it can be shown
that Eq. (1) and Eq. (4) with n=0 are identical
with Eq. (8) when p=2. Also, Eq. (2) and Eq. (4)
with n=1 are the same as Eq. (8) when p=3.
When the value of n in Eq. (4) equals 3 then the
value of p in Eq. (8) assumes 5. If p=1, Eq. (8)
will become the log-linear equation of Yalkowsky
and Roseman (Yalkowsky and Roseman, 1981).

Employing Eq. (8) a theoretical justification has
provided to the semiempirical EHA which was
widely used in modelling of cosolvency phe-
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nomenon (Adjei et al., 1980; Martin et al., 1980,
1981, 1982a,b, 1985; Martin and Miralles, 1982;
Wu and Martin, 1983; Subrahmanyam et al.,
1992; Reillo et al., 1993; 1995b). The EHA is:

− log Xm= − logXi
2+

V2f
2
1

2.303 RT
(d2

1+d2
2−2W)

(9)

where X2
i represents the ideal solubility, V2 is the

molar volume of the solute, f1 denotes the vol-
ume fraction of the solvent system in the solution
which is usually approximates unity (Chertkoff
and Martin, 1960; Yalkowsky et al., 1975; Acree
and Bertrand, 1981; Amidon and Williams, 1982;
Acree and Rytting, 1983; Regosz et al., 1992;
Bustamante et al., 1991, 1993; Escalera et al.,
1994), R is the molar gas constant, T is the
absolute temperature, d1 and d2 are the solubility
parameters of the solvent and the solute and W is
a solute–solvent interaction term and is calcu-
lated by the empirical power series Eq. (10):
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4
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C0–C5 are the curve fitting parameters. Before
regressing W versus d1 its value is calculated
practically from Eq. (11):

W=
log Xm− log Xi

2+Ad2
1+Ad2

2

2A
(11)

in which A=
V2

(2.303RT)
.Substitution for log Xm

from Eq. (8) with p=5 in Eq. (11) and replacing
fa values in the resulted equation in terms of d1

calculated by Eq. (12) (Martin et al., 1993; Busta-
mante et al., 1993, 1994):

d1= fada+ fbdb= fada+ (1− fa)db (12)

and subsequent simplification and rearrangements
will yield Eq. (10). The values of da and db are the
solvents a and b solubility parameters.

A similar method can also be used to provide a
theoretical justification for other polynomial
power series cosolvency models employing d1 or fa

(Yalkowsky and Roseman, 1981; Martin et al.,
1982a; Subrahmanyam et al., 1992; Bustamante et
al., 1993; Escalera et al., 1994; O’Reilly and Corri-
gan, 1995; Reillo et al., 1995b).

The corresponding GSM of the three suffix
EFE (Eq. (8) up to power 3) and CNIBS/R-K
with n=2 (Eq. (7) were applied to the 88 data
sets whose references were cited in Table 1 of a
previous paper (Barzegar-Jalali and Jouyban-
Gharamaleki, 1996) and percent overall average
errors, %O.A.E., were 3.59 and 3.78, respectively,
while the reported %O.A.E. of the original EFE
and CNIBS/R-K were 3.95 and 3.07. These differ-
ences can be attributed to the different arrange-
ments of the independent variables in the original
and the corresponding general models.
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